

Table of Contents

Introduction ... 1

Motivation .. 1

Adaptive Hyperparameter Search ... 4

Algorithm Overview ... 4

Early Stopping Safety .. 5

Productionization .. 6

User-Friendly API ... 7

Orchestration ... 8

Parallelization .. 9

About Determined ... 10

1

Introduction

Machine learning model performance hinges
on effective hyperparameters that govern
everything from feature selection to model
architecture to the training process. In the
case of deep learning models, it can take
days or weeks to train a model under just one
hyperparameter configuration. Because hy-
perparameter optimization suffers from the
curse of dimensionality,1 it seems impossible
to test enough hyperparameter configura-
tions to ensure that we aren’t leaving model
performance on the table.

In this white paper, we explore Determined
AI’s solution to this challenging problem.
We reveal the inner workings of our adap-
tive hyperparameter search capability, a

theoretically sound approach to hyperpa-
rameter optimization that leverages partial
training to explore significantly more con-
figurations compared to existing methods.
Beyond the algorithms, we explore how De-
termined productionizes hyperparameter
tuning, offering the ease-of-use that ma-
chine learning engineers crave, and the
system performance and reliability that
production infrastructure teams demand.

At Determined AI, we build software that
helps organizations build better machine
learning models faster, and automatic hy-
perparameter tuning is a foundational
component to achieve this goal.

Motivation

Why is automatic hyperparameter tuning a
mission-critical capability for organizations
developing deep learning models?

Consider a machine learning engineer at a fi-
nancial services company building a credit
card fraud detection engine. Given that the
bank houses a vast history of transactions la-
beled fraudulent or not, machine learning is
a natural fit to solve this problem.

1 The space of possible configurations is exponential in the number of hyperparameters.

Armed with some historical data, they exper-
iment with a couple of models and achieve
promising results on held out test data.
They’ve proven the concept, but they wonder
if there is room for improvement. The ma-
chine learning engineer is squarely in the
hyperparameter tuning phase of the model
development lifecycle, asking themselves:
would different features, model architec-
tures, or learning process hyperparameters
produce a better model?

2

They might ask:

• What other features might yield better model performance?

For example:

 Internally available features about customers and merchants.

 Derived features like a transaction’s standard deviation from the merchant’s
recent historical average.

 For point-of-sale transactions, publicly available economic and demographic
features describing the merchant location.

• What model architecture works best?

 What kinds of layers should comprise the neural network?

 How should they orient and parameterize the layers (e.g., size, activation
function)?

• What learning algorithm hyperparameters should we set to yield an effective model
within a reasonable amount of time?

 What gradient descent mini batch size?

 How should the machine learning engineer parameterize the optimizer (e.g.,
learning rate)?

These are just a handful of the decisions that
the machine learning engineer makes dur-
ing the model development lifecycle. They
can manually experiment to navigate these
decisions, but hand tuning isn’t feasible due
to the curse of dimensionality — even if a
model has just ten categorical hyperparam-
eters with five possible values per

hyperparameter, and each configuration
takes one minute to train, it would take
nearly twenty compute years to entirely
cover the search space. With deep learning,
the situation is even more daunting since
there are typically tens of hyperparameters
and training a single configuration can take
hours to weeks.

3

“The machine learning engineer is squarely in the

hyperparameter tuning phase of the model development

lifecycle, asking themselves: would different features,

model architectures, or learning process

hyperparameters produce a better model?”

Unfortunately, existing hyperparameter
tuning techniques fall short in this setting.
Random and grid search really only apply
when the hyperparameter search space is
small and it’s inexpensive to evaluate points
in the space (think seconds). Recent re-
search has focused on Bayesian methods2
that optimize hyperparameter configura-
tion selection. The core idea of Bayesian
optimization is to model the probability of a
hyperparameter configuration’s perfor-
mance on the objective and sample
hyperparameter configurations from this
distribution. Nevertheless, Bayesian optimi-
zation is challenging in deep learning, as it
assumes that the initial random exploration
of the search space provides adequate infor-
mation to accurately model performance. In
high-dimensional hyperparameter spaces,
this is inherently problematic, particularly
for models that take days or weeks to train.
Thus, like random and grid search, Bayesian

methods are still “restricted to problems of
moderate dimension”3 unless there is some
attempt to heuristically downsample or re-
duce the dimensionality of the
hyperparameter space.

To help machine learning engineers tune
their deep learning models, Determined AI
offers adaptive hyperparameter tuning, a
practical and broadly applicable technique
that adaptively focuses on worthwhile areas
of the search space in a resource-aware
fashion, yielding significant model perfor-
mance improvements much more quickly
than existing approaches. The algorithm is
particularly well-suited to the large search
spaces and long training cycles common in
deep learning. By leveraging our adaptive
approach, machine learning engineers can
produce more high performing models in
less time.

2 Practical Bayesian Optimization of Machine Learning Algorithms
3 Bayesian Optimization in High Dimensions via Random Embeddings

https://arxiv.org/abs/1206.2944
https://www.cs.ubc.ca/%7Ehutter/papers/13-IJCAI-BO-highdim.pdf

4

Adaptive Hyperparameter Search

We all know what it’s like to watch a game
on TV when one side is winning by such a
large margin that the game is “over before
it’s over.” While a comeback is possible, it
just doesn’t feel worth watching for another
half hour to the end, so we grab the remote
and flip to another game. Just as we might

change the channel in this scenario, Deter-
mined’s adaptive hyperparameter search
abandons unpromising hyperparameter
configurations that are unlikely to outper-
form other configurations under
consideration.

Algorithm Overview

Our adaptive hyperparameter search algo-
rithm is based on the Successive Halving
(SHA) and Hyperband algorithms presented
by our cofounder Ameet Talwalkar et al.4,5

The idea behind SHA follows directly from
its name: allocate a resource budget to a set
of hyperparameter configurations, evaluate
the performance of all configurations, throw
out the worst half6, and repeat until one con-
figuration remains. Hyperband extends SHA

to address a key drawback: since we don’t
know how quickly or smoothly the optimiza-
tion objective converges, we can’t say a
priori how aggressively to prune underper-
forming configurations. Should we train
many configurations for a small amount of
time on average, or fewer configurations
longer? Hyperband simply runs SHA at dif-
ferent points on this tradeoff spectrum.

“Hyperband partially evaluates hyperparameter

configurations, adaptively dedicating resources to more

promising configurations.”

While the intuition of adaptive downsam-
pling is clear — don’t waste resources
evaluating losing hyperparameter configu-
rations — we are playing with fire if we tune

4 Non-stochastic best arm identification and hyperparameter optimization
5 Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
6 Despite the name “Successive Halving,” we can prune by factors other than 2. In Determined AI’s platform,

this configurable factor defaults to 3.

our models strictly based on gut feeling or
heuristics. In the next section, we describe
the strong theoretical guarantees backing
this simple algorithm.

https://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1603.06560

5

Early Stopping Safety

How do we know that it’s safe for Hyperband to abandon hyperparameter configurations based
on partial evaluation? What if we abandon a late-blooming configuration too soon? While a de-
tailed theoretical analysis is beyond the scope of this white paper, we provide an intuitive, high-
level description of theoretical properties of Determined’s adaptive hyperparameter tuning.

“While the intuition of Hyperband is clear, we are playing

with fire if we tune our models based on gut feeling or

heuristics.”

The theory behind Hyperband relies on “en-
velope functions,” which plot over time (or
iterations) the maximum distance of inter-
mediate observed losses from the true
terminal validation loss observed if we train
fully.

Suppose there are n configurations and con-
sider the task of identifying the winning
configuration whose terminal validation
loss is vw. The optimal strategy would allo-
cate to each configuration the minimum
resource required to distinguish its terminal
validation loss vi from vw. Mathematically,
this means training just long enough so that
the envelope functions depicted above
bound the intermediate loss to be less than
(vi - vw) / 2 away from the terminal value. The
resource budget required by SHA when
given access to these envelope functions is
only a constant factor away from this opti-
mal approach because it capitalizes on

7 Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

configurations that are easy to distinguish
from vw. Of course, it is unrealistic to assume
knowledge of these envelope functions. Re-
markably, because Hyperband calls SHA for
geometrically increasing values of n, Hyper-
band’s required resource budget is only a
log factor larger than SHA. We refer the
reader to the original research paper7 for
more details about the theoretical under-
pinnings of SHA and Hyperband.

https://arxiv.org/abs/1603.06560

6

Productionization

Adaptive downsampling algorithms like
SHA and Hyperband have achieved impres-
sive results on many hyperparameter
tuning benchmarks, spawning a wave of re-
lated research.8 Beyond research, these
downsampling methods are available in
many open source and commercial auto-
mated ML offerings.9 This widespread
adoption validates adaptive downsam-
pling as the preferred technique for tuning
deep learning models. What, then, differen-
tiates Determined’s offering? Determined’s
Hyperband implementation is production-
grade, offering both first-rate ease-of-use
and superior system performance to de-
light machine learning and infrastructure
teams alike.

Ease-of-use is one of the most important
considerations in production; if an ad-
vanced method is too cumbersome to use,
the machine learning engineer may never
realize its benefits. In a recent survey on hy-
perparameter tuning methods in machine
learning research, over 40% of respondents
resort to manual tuning, while the vast ma-
jority of automatic tuning leverages grid or
random search.10 If the research community
itself struggles in applying state-of-the-art
hyperparameter tuning methods, how can
we expect machine learning engineers in in-
dustry to employ these more advanced
methods? At Determined, we obsess over
ease-of-use; to that end, we deliver a user-
friendly, configuration-based API for hy-
perparameter tuning.

“Determined’s Hyperband implementation is production-

grade, offering both first-rate ease-of-use and superior

system performance to delight machine learning and

infrastructure teams alike.”

8 The original Hyperband paper has been cited 350+ times as of the writing of this white paper
9 E.g., KubeFlow, tune, Keras Tuner, HpBandSter, scikit-hyperband, and hypersearch
10 Survey of machine-learning experimental methods at NeurIPS2019 and ICLR2020

https://www.kubeflow.org/docs/components/hyperparameter-tuning/experiment/#hyperband
https://ray.readthedocs.io/en/latest/tune.html
https://keras-team.github.io/keras-tuner/
https://github.com/automl/HpBandSter
https://github.com/thuijskens/scikit-hyperband
https://github.com/kevinzakka/hypersearch
https://hal.archives-ouvertes.fr/hal-02447823/document

7

While users enjoy Determined’s intuitive hy-
perparameter tuning API, the platform
automatically handles system performance
concerns: cluster resource sharing, schedul-
ing, fault tolerance, parallelization, and
autoscaling.

In this section, we discuss the three design
pillars that together make hyperparameter
tuning in Determined a delight rather than a
systems engineering chore: a user-friendly
API, workload orchestration, and experi-
ment parallelization.

User-Friendly API
Despite their drawbacks in deep learning,
the classical hyperparameter tuning meth-
ods have clean and intuitive APIs: random
search only takes as input the number of
configurations to evaluate and a training
resource budget, and grid search is com-
parably simple, only requiring a sampling
interval for numeric hyperparameters. In
contrast, SHA and its variants have inter-
nal settings like the percentage of
configurations to prune after evaluation.
To facilitate use and increase adoption,
Determined offers a simplified variant of
adaptive downsampling with an intuitive
interface akin to that of random search. In
the experiment configuration, we only
need to specify the maximum number of
hyperparameter configurations to ex-
plore, and the maximum number of
training steps that any trial can take (i.e.,
the per-configuration resource budget
constraint).

Advanced users can leverage Deter-
mined’s adaptive searcher should they
desire more control over the internal set-
tings. For practical reasons, this searcher’s
configuration options don’t mirror Hyper-
band’s exactly. For instance, Determined
accepts a mode parameter that lets users
adaptively downsample more aggres-
sively than Hyperband. Hyperband is
conservative by design because, in gen-
eral, we don’t know how quickly the
validation metric will converge (i.e., we
don’t know the behavior of the envelope
functions). In practice, if a user believes
that the validation metric converges
quickly, then they can adaptively
downsample more like vanilla SHA in or-
der to speed up the optimization process
or to explore more points in the hyperpa-
rameter space. We refer the reader to our
product documentation for further details
on the adaptive searcher’s configura-
tion options.

https://docs.determined.ai/latest/topic-guides/hp-search/hp-adaptive-advanced.html

8

Orchestration
The applications we use every day — email, business productivity applications, e-commerce
sites, navigation apps that get us from A to B — are built to withstand the inconvenient forces
lurking in production. Systems must perform in the face of bursty and often unpredictable re-
source needs, high concurrency, and hardware failures. Orchestration — the coordination and
management of the systems powering these critical applications — is a tall order given every-
thing that can go wrong. Orchestrating resources for large-scale hyperparameter tuning
workloads is similarly rife with these challenges, and even faces additional headwinds specific to
deep learning:

1. Hardware unexpectedly fails all the time. Hyperparameter tuning must self-
heal in such a scenario. Better yet, a trial should pick up where it left off when
the hardware failure occurred. This necessitates automatic checkpointing
during trial execution.

2. Hardware expectedly goes away, too, e.g., when using lower cost preempti-
ble cloud instances that cost up to 70% less than regular instances.

3. When running on the cloud, hardware ought to autoscale up to meet the de-
mand of a large hyperparameter tuning workload, and autoscale down on
completion.

4. Whether on prem or in the cloud, a machine learning team might need to
pause a long-running hyperparameter tuning experiment in order to manu-
ally prioritize a different workload, and then resume the job where it left off.

5. Hyperparameter tuning experiments must be reproducible under any of the
above circumstances.

As a holistic training platform designed from the ground up for deep learning, Determined han-
dles all of the above, allowing the machine learning engineer to focus on models rather than
systems.

9

Parallelization
Given the (often headline-worthy) re-
source needs for training deep learning
models, parallelization is virtually a hard
requirement for hyperparameter tuning
methods. Fortunately, SHA and Hyper-
band are parallelizable in myriad ways. In
Determined, we parallelize Hyperband by
running each SHA trial independently and
synchronously evaluating trials of a given
SHA run when it’s time to abandon the low
performing configurations.

It’s a bit tricky to get parallelization right —
adaptive downsampling algorithms are
certainly not as straightforward to imple-
ment as, say, random search — and many
of the previously mentioned orchestration
challenges prove more difficult in our set-
ting. If a trial fails, adaptive downsampling
requires more careful workload coordina-
tion and state management than, say,

random search would need in the same
scenario.

At Determined, system performance
guides our product design alongside
ease-of-use, so we continue to push the
envelope on the parallelization front. We
are actively investigating removing the
synchronous evaluation barrier of SHA,
specifically by early-promoting promising
configurations in the asynchronous vari-
ant of SHA (aptly named ASHA). By
combining early promotion with early
stopping, a given hyperparameter tuning
workload is less susceptible to resource
underutilization (either due to stragglers,
or during the final stages of SHA when just
a handful of configurations remain). For
further detail on ASHA, we refer the
reader to the ASHA research paper our co-
founder Ameet Talwalkar et al. recently
published.11

11 A System for Massively Parallel Hyperparameter Tuning

https://arxiv.org/pdf/1810.05934.pdf

10

About Determined

In the machine learning model development lifecycle, hyperparameter tuning can make or
break the ultimate usefulness of the model. Along with resource sharing, experiment tracking
capabilities, and distributed training, Determined’s adaptive hyperparameter tuning gives ma-
chine learning teams a suite of model development and training tools to deliver better models,
faster. Learn more on our website, or drop us an email.

https://determined.ai/
mailto:hello@determined.ai

	Table of Contents
	Introduction
	Motivation
	They might ask:

	Adaptive Hyperparameter Search
	Algorithm Overview
	Early Stopping Safety
	Productionization
	User-Friendly API
	Orchestration
	Parallelization

	About Determined

